

COMPUTER SCIENCE MSC

Mode: Full-time training

Program Coordinator: Dr. György Vaszi (vaszil.gyorgy@inf.unideb.hu)

Mentors: Dr. Aszalós László (aszalos.laszlo@inf.unideb.hu)

Dr. Magda Váterész (varteresz.magda@inf.unideb.hu)

Specialization: -

General requirements of the diploma are regulated by The Rules and Regulations of The University of Debrecen.

Diploma credit requirements:

Mathematical and computer sciences:	36 credits
Compulsory courses:	21 credits
Elective courses:	15 credits
Informatical sciences:	42 credits
Compulsory courses:	15 credits
Elective courses:	27 credits
Elective knowledge: („Mathematical and computer sciences” or „Informatical”)	6 credits
Thesis work:	30 credits
Free choice:	6 credits
Work and Fire Safety Training:	0 credit
Physical Education (1 semester):	0 credit
Total (number of credits required to obtain degree):	120 credits

Mathematical and computer sciences, compulsory courses – needed 21 credits

Code	Subject name	Cre- dit	Type and number			Asses- ment	Prerequisites	Period	Semes- ter				
			lec.	practice									
				sem.	lab								
INMPA0101E	Machine learning basics	6	2	2		E		1	1				
INMPA0101G						S							
INMPA0102E	Algorithms	3	2			E		1	1				
INMPA0103E	Cryptography	6	2		2	E		1	1				
INMPA0103L						S							
INMPA0205E	Optimization algorithms	6	2		2	E		2	2				
INMPA0205L						S							

Informatical sciences, compulsory courses – needed 15 credits

Code	Subject name	Cre- dit	Type and number			Asses- ment	Prerequisites	Period	Semes- ter				
			lec.	practice									
				sem.	lab								
INMPA0104E	Information systems	3	2			E		1	1				
INMPA0206E	Data mining	6	2		2	E		2	2				
INMPA0206L						S							
INMPA0207E	Computer graphics	6	2		2	E		2	2				
INMPA0207L						S							

Thesis work – needed 30 credits

Code	Subject name	Cre- dit	Type and number			Asses- ment	Prerequisites	Period	Semes- ter				
			lec.	practice									
				sem.	lab								
INMPA0308L	Thesis 1	15			10	PM		1	3				
INMPA0409L	Thesis 2	15			10	PM		2	4				

Mathematical and computer sciences, elective courses – needed 15 credits

Code	Subject name	Cre- dit	Type and number			Asses- ment	Prerequisites	Period	Semes- ter				
			lec.	practice									
				sem.	lab								
INMPA9910L	Operation research	3			2	PM		1	1				
INMPA9911E	Advanced inference methods	6	2	2		PM		2	2				
INMPA9911G													
INMPA9912E	Logical algorithms	3	2			E		2	2				
INMPA9913E	Geometric modelling	3	2			E	INMPA0207	1	3				
INMPA9914E	Coding theory	3	2			E		1	3				

Code	Subject name	Cre-dit	Type and number			Asses-ment	Prerequisites	Period	Semes-ter				
			lec.	practice									
				sem.	lab								
INMPA9915E	Theory of neural networks	3	2			E	INMPA0205	1	3				
INMPA9916E	Models of computation	3	2			E		1	3				
INMPA9917E INMPA9917L	Declarative programming	6	2		2	E S		2	4				

Informatical sciences, elective courses – needed 27 credits

(At least one course from „Data science” block and one course from „Information systems” block)

„Data science” block

Code	Subject name	Cre-dit	Type and number			Asses-ment	Prerequisites	Period	Semes-ter				
			lec.	practice									
				sem.	lab								
INMPA9918L	Geoinformatics	3			2	PM		1	1				
INMPA9919L	Advanced cloud computing	3			2	PM		2	2				
INMPA9920E INMPA9920L	Image processing and medical imaging	6	2		2	PM		2	2				
INMPA9921E INMPA9921L	Visualization and visual analytics	6	2		2	E S	INMPA0207	1	3				
INMPA9922L	Data science lab	3			2	PM	INMPA0101	2	4				
INMPA9923E INMPA9923L	Advanced machine learning	6	2		2	E S	INMPA0101	2	4				

„Information systems” block

Code	Subject name	Cre-dit	Type and number			Asses-ment	Prerequisites	Period	Semes-ter				
			lec.	practice									
				sem.	lab								
INMPA9924L	Advanced software architecture patterns	3			2	PM		1	1				
INMPA9925E INMPA9925L	Advanced XML technologies	6	2		2	PM		1	1				
INMPA9926L	NoSQL databases	3			2	PM		1	1				
INMPA9927L	Sensor networks and the internet of things	3			2	PM		1	1				
INMPA9928L	Parallel and high performance computing	3			2	PM		2	2				
INMPA9929L	Text- and webmining	3			2	PM	INMPA0206	1	3				
INMPA9930L	Information systems in practice	6			2	PM	INMPA0104	2	4				
INMPA9931E INMPA9931L	Advanced software engineering	6	2		2	E S		2	4				

Free choice – needed 6 credit

Code	Subject name	Cre-dit	Type and number			Asses-ment	Prerequisites	Period	Semes-ter				
			lec.	practice									
				sem.	lab								

Exam types: E exam
S signature
P practical mark

COMPUTER SCIENCE BSC

Description of Subjects

Mathematics and Computer Science - Compulsory Courses

MACHINE LEARNING BASICS

INMPA0101-17

Semester:	1
Type:	Lecture / Seminar
Number of Classes:	2+2+0
Credit:	6
Status:	Obligatory
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. András Hajdu

Topics:

To get familiar with the most important tasks, tools and techniques in machine learning. The subject focuses on solving realistic problems, to directly apply the basic concepts and results. The most important topics are exploiting useful information from a large amount of data for automatic classification and recognition purposes. The main mission of the course is to make the students familiar with the practical applicability of the concepts of this field to let the forthcoming, more specific, courses to be built upon on this knowledge. Basic concepts. Linear Algebra. Probability and Information Theory. Numeric Computations. Data Preprocessing. Dimensionality Reduction. Regression Models. Classification. Clustering. Association Rule Learning. Reinforcement Learning.

Compulsory/Recommended Readings:

- W. McKinney: Python for Data Analysis (1 ed.). O'Reilly Media, Inc. 2012.
- Christopher Bishop: Pattern Recognition and Machine Learning, Springer, 2006.
- D. Conway, J.M. White: Machine Learning for Hackers, O'Reilly Media, Inc., 2012.
- I. Goodfellow, Y. Bengio, A. Courville: Deep Learning, MIT Press, 2016.

ALGORITHMS

INMPA0102-17

Semester:	1
Type:	Lecture
Number of Classes:	2+0+0
Credit:	3
Status:	Obligatory
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. György Vaszil

Topics:

Complexity of conventional algorithms, lower bounds; graph algorithms; dynamic programming and suboptimal graph algorithms, efficient data structures; randomized algorithms, average complexity, Las Vegas and Monte Carlo methods, quick sort, random binary tree algorithms; parallel algorithms, CRCW and CREW models, parallel architectures, communication costs; parallel sortings, expander graphs.

Compulsory/Recommended Readings:

- Sara Baase: Computer algorithms: introduction to design and analysis Pearson Education, 2009
- Thomas H. Cormen • Charles E. Leiserson • Ronald L. Rivest - Clifford Stein: Introduction to Algorithms; Third Edition, The MIT Press, Cambridge, Massachusetts, London, England, 2009
- Rajeev Motwani, Prabhakar Raghavan: Randomized Algorithms, Cambridge University Press (1995)

CRYPTOGRAPHY

INMPA0103-17

Semester:	1
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Obligatory
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. Attila Pethő

Topics:

The mathematical model of secure information transmission. Basic notion of cryptography: message, plain text, ciphertext, encoding- and decoding function, key. Pseudorandom number generation, stream cyphers, cyphers based on linear feedback shift registers. Basic principles for the construction of modern symmetric cryptosystems: the Feinstel network and DES; the method of permutation-substitution blocks, AES. Block cypher operations: ECB, CBC, CFB. Padding.

The necessity and basic notions of asymmetric cryptosystems: one way and one-way trapdoor functions, hash functions. Number theoretic tools necessary for RSA. The RSA algorithm and the choice of its parameters. Primetests and factorization. Public key cryptographic systems based on discrete logarithm problem: Diffie-Hellmann key exchange and ElGamal encryption. Public key cryptographic systems based on the discrete elliptic logarithm problem

The necessity of digital signature and its applications. Digital signature schemes. The RSA, ElGamal and DSA digital signature algorithms. Blind signature, its technology and its applications.

Quantum computer-resistant algorithms of cryptography (Overview).

Compulsory/Recommended Readings:

- William Stallings, Cryptography and Network Security Principles and Practice (6. edition), 2014
- Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman, An Introduction to Mathematical Cryptography, Springer 2014, ISBN: 978-1-4939-1711-2

OPTIMIZATION ALGORITHMS

INMPA0205-17

Semester:	2
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Obligatory
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. Ágnes Baran

Topics:

Differential calculus of multivariable functions, unconstrained and constrained extrema. Gradient methods, trust-region, Newton's method, quasi-Newton methods, conjugate gradient methods, nonlinear least-squares problems, stochastic optimization (simulated annealing).

Compulsory/Recommended Readings:

- Nocedal, Wright, Numerical Optimization, Springer, 2006, ISBN-10: 0-387-30303-0
- Gill, Murray, Wright, Practical Optimization, Emerald Group, 1982, ISBN-13: 978-0122839528

Informational Sciences - Compulsory Courses

INFORMATION SYSTEMS

INMPA0104-17

Semester:	1
Type:	Lecture
Number of Classes:	2+0+0
Credit:	3
Status:	Obligatory
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. Márton Ispány

Topics:

Introduction: data models, ER and EER, and their mapping to the relation model. Practical database design methodology and use of UML diagrams. Object, object-relation and XML databases. NoSQL databases. Query processing and optimization, database tuning. Distributed databases. Modelling information systems. Architectures of Information systems. Data warehouse, OLAP. Information retrieval.

Compulsory/Recommended Readings:

- R. Elmasri, S. B. Navathe: Fundamentals of Database Systems, Addison Wesley, 2004,
- Sommerville: Software Engineering, Addison Wesley, 2004.

DATA MINING

INBPA0206-17

Semester:	2
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Obligatory
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. Márton Ispány

Topics:

Definition of data mining and its role in the KDD process. Basic data mining tasks and techniques, the most important challenges. Datatypes, attributes, measuring scales, types of datasets. Issues of data quality, preprocessing. Explorative data analysis: statistics and graphical tools. Supervised learning: decision trees, regression, rule-based, nearest neighbour, Bayes classifiers, artificial neural networks (ANN), support vector machines (SVM), ensemble methods (bagging, boosting). Association rules. Distance and similarity. Clustering. K-means clustering and its variants. Hierarchical clustering. Density based methods: DBSCAN. Performance metrics and evaluation. Anomaly detection. Web-mining. Applications: spam-filtering, predictive maintenance services.

Compulsory/Recommended Readings:

- Pang-Nin Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining. Pearson / Addison Wesley 2006. ISBN 0-321-32136-7
- Jiawei Han, Micheline Kamber: Data Mining: Concepts and Techniques. Elsevier 2006. ISBN 13: 978-1-55860-901-3

COMPUTER GRAPHICS

INBPA0207-17

Semester:	2
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Obligatory
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. Roland Imre Kunkli

Topics:

The aim of computer graphics, historical overview. Visual display devices. The programmable graphical processing unit and pipeline. The used programming and shading languages' graphical possibilities. Drawing simple primitives. Fundamentals from linear algebra, projective and analytic geometry. Coordinate systems. Transformations and their classifications. Viewing. Orthogonal and central projections, axonometric projections. Viewing frustum. Visualizing surfaces generated by two variable (scalar valued) functions. Visualizing surfaces based on their parametric equation systems. Loading and using meshes. Data structures for surfaces. Visibility algorithms. Illumination models. Ambient, diffuse and specular lights. Light and material properties. Surface shading. Flat shading. Gouraud shading. Phong shading. Texturing. Ray casting, recursive ray tracing. Interpolating curves. Approximating curves. Hermite arcs with the GMT formula. Bézier curves. Joining curves, mathematical and geometrical continuities. Animations and motions. Incremental algorithms for drawing a line segment, a circle, or an ellipse. Filling and clipping algorithms. Overview of the most common information and scientific visualization problems and techniques. Interesting problems from the state of the art of computer graphics.

Compulsory/Recommended Readings:

- Tomas Akenine-Moller, Eric Haines, Naty Hoffman: Real-Time Rendering (3rd Edition). A K Peters/CRC Press, 2008., ISBN: 978-1568814247
- Donald D. Hearn, M. Pauline Baker: Computer graphics with OpenGL (3rd Edition). Prentice Hall, 2003., ISBN: 978-0130153906
- Steve Marschner, Peter Shirley: Fundamentals of Computer Graphics (4th Edition), A K Peters/CRC Press, 2015., ISBN-13: 978-1482229394
- John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K. Feiner, Kurt Akeley: Computer graphics: principles and practice (3rd Edition). Addison-Wesley Professional, 2014., ISBN: 978-0321399526

Mathematics and Computer Science - Elective Courses

OPERATION RESEARCH

INMPA9910-17

Semester:	1
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. Pál Burai

Topics:

Introduction to the basic methods and algorithms of optimization and their applications. Blind search methods. Local search methods. Multiobjective optimization. Genetic and evolutionary algorithms.

Compulsory/Recommended Readings:

- Cortez: Modern optimization with R, Springer, 2014.
- Michalewicz, Fogel: How to solve it: modern heuristic, Springer, 2004.

ADVANCED INFERENCE METHODS

INMPA9911-17

Semester:	2
Type:	Lecture / Seminar
Number of Classes:	2+2+0
Credit:	6
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. László Aszalós

Topics:

Structure of the compilers, reader, extender, grammars, parsing, syntax tree, domain specific languages, source-source compilers, interpreters.

Compulsory/Recommended Readings:

- Russel, Norvig: Artificial Intelligence: a modern approach, Prentice Hall, 2009.
- David L. Poole and Alan K. Mackworth: Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010.

LOGICAL ALGORITHMS

INMPA9912-17

Semester:	2
Type:	Lecture
Number of Classes:	2+0+0
Credit:	3
Status:	Optional
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. Tamás Mihálydeák

Topics:

Resolution in propositional and first order logic. Binary decision diagrams. Algorithms of SAT. Different systems of first order logical calculus. Herbrand's models. The problems of decidability in first order logic. The fundamental principles of logical programming. Verification of sequential programs.

Compulsory/Recommended Readings:

- Modechai Ben-Ari: Mathematical Logic for Computer Science, Third edition, Springer-Verlag London, 2012, DOI 10.1007/978-1-4471-4129-7
- M. Huth, M. D. Ryan: Logic in Computer Science: Modelling and Reasoning about Systems (Second Edition), Cambridge University Press, 2004
- E. Mendelson: Introduction to Mathematical Logic (Fifth edition), Chapman and Hall/CRC, 2009

GEOMETRIC MODELLING

INMPA9913-17

Semester:	3
Type:	Lecture
Number of Classes:	2+0+0
Credit:	3
Status:	Optional
Assessment:	Exam
Prerequisites:	INMPA0207-17 (Computer graphics)
Responsible:	Dr. Ildikó Papp

Topics:

The goal of the subject is to overview advanced applied mathematical and computational geometric methods and algorithms for the mathematical description of curves and shapes. The methods are used to in computer graphics and computer aided design and manufacturing.

Related topics:

Projective and differential geometrical background of curve and surface modeling, Point cloud and processing possibilities: Mesh Repair, Remeshing, Mesh Editing, Advanced knowledge of Bézier and B-spline (NURBS) curves and surfaces, Advanced techniques: Subdivision, Skinning and offset techniques, Sweep surfaces; Smoothing and blending curves and surfaces, Special projecting models, Reconstruction based on images, Fundamentals of modeling for 3D printing.

Compulsory/Recommended Readings:

- Hoschek J., Lasser D. Fundamentals of computer aided geometric design, A. K. Peters, Ltd., Wellesley, 1993. ISBN-10: 1568810075
- David Salomon: Curves and Surface for Computer-Aided Geometric Design, Springer, 2006. ISBN-10: 0387241965
- Tomas Akenine-Moller, Eric Haines, Naty Hoffman: Real-Time Rendering, 3 edition, 2008, ISBN-10: 1568814240, A K Peters/CRC Press
- Mario Botsch, Mark Pauly, Christian Rossli, Stephan Bischoff, Leif Kobbelt: Geometric Modeling Based on Triangle Meshes, 2006, http://lgg.epfl.ch/publications/2006/botsch_2006_GMT_sg.pdf
- Alan Watt: 3D Computer Graphics, Addison-Wesley, 3rd Edition, 1999. ISBN-10: 0201398559

CODING THEORY

INMPA9914-17

Semester:	3
Type:	Lecture
Number of Classes:	2+0+0
Credit:	3
Status:	Optional
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. Tamás Herendi

Topics:

Shannon's communication model; uniquely decodable codes, completeness of codes; prefix codes; measurement of information; Shannon-entropy; optimal encoding, Huffmann codes; efficiency, ideal codes. Data compression methods, LZ77 és LZ78, LZW; FFT, wavelet transformation, lossy compression principles. Basic concepts of error correcting codes, block codes, error detecting and error correction, code distance; linear codes, systematic encoding, generating and parity check matrix, code bounds, syndrome and its use for error correction; Hamming codes, Reed-Solomon codes; cyclic codes; code combinations.

Compulsory/Recommended Readings:

- Elwyn R. Berlekamp Algebraic Coding Theory, World Scientific Publishing (2014)
- McEliece, R. The Theory of Information and Coding. Cambridge, (2002)

THEORY OF NEURAL NETWORKS

INMPA9915-17

Semester:	3
Type:	Lecture
Number of Classes:	2+0+0
Credit:	3
Status:	Optional
Assessment:	Exam
Prerequisites:	INMPA0205-17 (Optimization algorithms)
Responsible:	Dr. István Fazekas

Topics:

The scope of problems that can be solved by neural networks. Main types of neural networks. Supervised and unsupervised learning. Structure and training of the multilayer perceptron (MLP). Activation functions, loss functions. Training MLP: error back-propagation. Gradient descent and conjugate gradient methods, quasi-Newton method, Levenberg-Marquardt method. Properties of MLP. Radial-basis function networks (RBF). Penalty functions, regularization. Generalized radial-basis function networks. Kernel function methods. The problem and methods of deep learning. The autoencoder. Support vector machines (SVM). The optimal hyperplane. SVM for separation and approximation. The structure and applications of the convolutional network. Error back-propagation for convolutional networks. Recurrent networks. Long short-term memory.

Compulsory/Recommended Readings:

- Haykin, S.: Neural Networks. A Comprehensive Foundation. Prentice hall. New Jersey, 1999. ISBN 0-13-273350-1
- Matlab Neural Network Toolbox. The Mathworks, Inc.
- Ian Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning. MIT Press, 2016.

MODELLS OF COMPUTATION

INMPA9916-17

Semester:	3
Type:	Lecture
Number of Classes:	2+0+0
Credit:	3
Status:	Optional
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. Péter Battyányi

Topics:

The course covers the basics of some conventional and unconventional computational models: parallel and regulated rewriting systems, grammar systems, DNA computation, membrane computation, reversible computing models.

Compulsory/Recommended Readings:

- M. Amos: Theoretical and Experimental DNA Computation. Springer, 2005
- J. Dassow, Gh. Paun: Regulated rewriting in formal language theory. Springer, 1989.
- C. Martin-Vide, V. Mitrana, Gh. Paun (szerk.): Formal Languages and Applications. Springer, 2004.
- J. Shallit: A second course in formal languages and automata theory. Cambridge University

DECLARATIVE PROGRAMMING

INMPA9917-17

Semester:	4
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Optional
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. György Vaszil

Topics:

The structure and general properties of functional languages, functions, higher order functions, evaluation, evaluation strategies, pattern matching. The mathematical model of functional languages:
the untyped lambda-calculus. Reduction, normal form, confluence. Evaluation strategies, arithmetic in lambda-calculus, fixpoint operators. Partial recursive functions, representations of data types, elements of functional languages in a lambda expression form. Simply-typed lambda-calculus, Curry and Church typing, strong normalization. Type inference, unification. The Hindley-Milner type inference algorithm. Polymorphic types, existential type. Recursive types, subtyping. Second order lambda-calculus, the lambda cube. Models of parallel computation. Illustration of the various notions through a chosen functional language. Prolog fundamentals. Recursive structures. Database management. Arithmetics in Prolog. Analysing compound Prolog expressions. Higher-order predicates. Definite clause grammars.

Compulsory/Recommended Readings:

- Benjamin C. Pierce: Types and Programming Languages, The MIT Press, 2002, 978-0262162098
- M. H. Sorensen, P. Urzyczyn: Lectures on the Curry-Howard Isomorphism, Elsevier Sci-ence, 2006, 978-0444520777
- Martin Odersky, Lex Spoon, Bill Venners: Programming in Scala, Artima Inc., 3rd edition, 2016, 978-0981531649
- Paul Chiusano, Runar Bjarnason: Functional Programming in Scala, Manning, 2014, 978-1617290657
- Leon S. Sterling and Ehud Y. Shapiro: The Art of Prolog, The MIT Press; 2nd rev edition, 1994, 978-0262691635

Informatical Sciences - Elective Courses

Data Science Block

GEOINFORMATICS

INMPA9918-17

Semester:	1
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. Marianna Bodroginé Zichar

Topics:

Handling, editing and analyzing vector and raster data sets with the usage of a geographic information system (styling, scale dependent visibility, automated update, classification, etc.). Projections, measuring, planning and performing network analysis. Accessing and editing vector data from code. Customization with codes, simple application developing. Publishing data on the web, special data formats. Case studies.

Compulsory/Recommended Readings:

- Longley, Paul A. and Goodchild, M. F.: Geographic Information Science and Systems, Wiley, 2015, 978-1118676950
- Fu, P. and Sun J.: Web GIS, Principles and applications, ESRI Press, 2011. 978-1589482456
- Documentation of the GIS software, programming language, and API.

ADVANCED CLOUD COMPUTING

INMPA9919-17

Semester:	2
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. Tamás Bérczes

Topics:

The goal of the subject is to provide an introduction to cloud computing (C2) topics, architecture, service elements, mechanisms and technologies. The course illustrates the cloud types and service models of cloud-based technologies and management methods. The students become familiar with the subject of virtualization techniques used in practice, data storage and transmission security issues. Described methods of network infrastructure in a virtualized environment, planning and present practical implementations through case-studies.

Compulsory/Recommended Readings:

- Anthony T. Velte, Toby J. Velte, Robert Elsenpeter (2010): Cloud Computing: A Practical Approach, ISBN: 978-0-07-162695-8
- Igor Faynberg, Hui-Lan Lu, Dor Skuler (2016): CLOUD COMPUTING Business Trends and Technologies, John Wiley & Sons Ltd
- "Thomas Erl, Robert Cope, Amin Naserpour (2015): Cloud Computing Design Patterns, Arcitura Education Inc. ISBN-13: 978-0-13-385856-3, ISBN-10: 0-13-385856-1"

IMAGE PROCESSING AND MEDICAL IMAGING

INMPA9920-17

Semester:	2
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. Attila Fazekas

Topics:

To get familiar with the most important tasks, tools and techniques related to image processing. The subject focuses on solving realistic problems, to directly apply the basic concepts and results.

Sampling, pixel operators, segmentation, mathematical morphology, linear filters, image transforms, multi-resolution image processing, noise reduction, restoration, feature extraction. Medical imaging, image reconstruction, direct and undirect visualisation. Databases and software tools.

Compulsory/Recommended Readings:

- V. Hlavac, M. Sonka, R. Boyle: Image Processing, Analysis, and Machine Vision, Cengage Learning, 2014.
- J. L. Prince, J. Links, Medical Imaging Signals and Systems, Pearson Education, 2014.
- K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 1990.
- C. Solomon, T. Breckon: Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab, Wiley-Blackwill, 2010.

VISUALIZATION AND VISUAL ANALYTICS

INMPA9921-17

Semester:	3
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Optional
Assessment:	Exam
Prerequisites:	INMPA0207-17 (Computer graphics)
Responsible:	Dr. Roland Imre Kunkli

Topics:

The purpose, principles and history of visualization and visual analytics. Practicing the usage of the used programming library and software through simple examples. Data types, datasets, data models and attributes. Data abstraction. Mental and visualization models. Visual variables. Actions, tasks, and goals. Task abstraction. Visualization design. Exploratory data analysis. Multidimensional data visualization. Data wrangling. Visual and graphical perception. Visualizing temporal and geospatial data. Visualizing trees, graphs, networks and texts. Interaction. Animation. Color. Scalability. Dimensionality reduction. Databases, tools and software for visual analytics. Storytelling. Classification and clustering. Collaboration. Validation and evaluation. Future trends in information visualization and visual analytics. Analysis case studies.

Compulsory/Recommended Readings:

- Tamara Munzner: Visualization Analysis and Design, A K Peters/CRC Press, 2014, ISBN: 978-1466508910
- Katy Borner, David E. Polley: Visual Insights: The Practical Guide to Making Sense of Data, The MIT Press, 2014, ISBN: 978-0262526197
- Edward R. Tufte: The Visual Display of Quantitative Information (2nd Edition), Graphics Pr, 2001, ISBN: 978-0961392147
- D. Keim, J. Kohlhammer, G. Ellis, F. Mansmann (editors): Mastering the information age - Solving problems with visual analytics. Eurographics Association, 2010., URL: <http://www.vismaster.eu/wp-content/uploads/2010/11/VisMaster-book-lowres.pdf>
- James J. Thomas (editor), Kristin A. Cook (editor): Illuminating the Path: The Research and Development Agenda for Visual Analytics, National Visualization and Analytics Center, 2005, ISBN: 978-0769523231

DATA SCIENCE LAB

INMPA9922-17

Semester:	4
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	INMPA0101-17 (Machine learning basics)
Responsible:	Dr. András Hajdu

Topics:

To get familiar with the most important challenges, tasks, tools and techniques related to data science in research and industry. The subject focuses on solving realistic problems, to directly apply the basic concepts and results. There is a strong intention to co-operate also with industrial partners within R&D projects. Challenges is Data Science (Research and Industry). Case Study, Image Recognition. Case Study, Processing Big Data. Recommender Systems. Digital Advertisements, Internet Search. Gaming. Fraud and Risk Detection. Route Planning, Delivery, Optimization. Robotics. Autonomous Driving. Project Work. Industrial Projects.

Compulsory/Recommended Readings:

- W. McKinney: Python for Data Analysis (1 ed.). O'Reilly Media, Inc. 2012.
- Christopher Bishop: Pattern Recognition and Machine Learning, Springer, 2006.
- D. Conway, J.M. White: Machine Learning for Hackers, O'Reilly Media, Inc., 2012.
- I. Goodfellow, Y. Bengio, A. Courville: Deep Learning, MIT Press, 2016.

ADVANCED MACHINE LEARNING

INMPA9923-17

Semester:	4
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Optional
Assessment:	Exam
Prerequisites:	INMPA0101-17 (Machine learning basics)
Responsible:	Dr. Bálint Antal

Topics:

Introduction to deep learning. Logistic regression. Neural networks. Feedforward networks. Backpropagation algorithm. Activation functions. Optimization. Stochastic gradient method and its variants. Momentum. Energy functions. Weight initialization. Regularization. Convolutional neural networks. Pooling layers. Dropout. Normalization. Representation learning. Visualization. Deep Convolutional neural networks. Recurrent neural networks. Advanced recurrent and recursive neural networks. Autoencoders. Generative models. Ensemble methods.

Compulsory/Recommended Readings:

- Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning, MIT Press, 2016
- Ludmila I. Kuncheva: Combining Pattern Classifiers: Methods and Algorithms, Second Edition, Wiley, 2014

Informatical Sciences - Elective Courses

Information Systems Block

ADVANCED SOFTWARE ARCHITECHTURE PATTERNS

INMPA9924-17

Semester:	1
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. László Szathmáry

Topics:

In the class the students are introduced to the common software architecture patterns (SOA, Mikrokernel Architecture Pattern, Microservice Architecture Pattern, Cloud Architecture Pattern). Each pattern includes a full explanation of how it works, explains the pattern's benefits and considerations, and describes the circumstances and conditions it was designed to address.

Compulsory/Recommended Readings:

- Mark Richards: Software Architecture Patterns, O'Reilly, 2015
- Sam Newman: Building Microservices, O'Reilly, 2015
- Thomas Erl: Service-Oriented Architecture: Analysis and Design for Services and Microservices (2nd Edition), Prentice Hall, 2016. december 22.
- Andreas Wittig, Michael Wittig: Amazon Web Services in Action, Manning Publications, 2015
- Thomas Erl: Cloud Computing: Concepts, Technology & Architecture, Prentice Hall, 2013.

ADVANCED XML TECHNOLOGIES

INMPA9925-17

Semester:	1
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. Attila Adamkó

Topics:

The goal of the course is to introduce students to XML standards that are widely used in the industry, and to demonstrate their use and the use of developer tools in the field. Topics discussed in the classes: XML schema languages (XML Schema, RELAX NG), XPath, XSLT, XProc, XQuery, native and embedded XML databases, JSON as an alternative to XML, storing XML documents in relational databases, contemporary XML applications and related developer tools (e.g., Atom, DocBook, SVG, XMPP).

Compulsory/Recommended Readings:

- Priscilla Walmsley: Definitive XML Schema, 2nd ed., Prentice Hall, 2012., ISBN: 978-0132886727,
- Doug Tidwell: XSLT, 2nd ed., O'Reilly Media, 2008., ISBN: 978-0596527211,
- Priscilla Walmsley: XQuery: Search Across a Variety of XML Data, 2nd ed., O'Reilly Media, 2016., ISBN: 978-1491915103.
- Erik Siegel, Adam Retter: eXist: A NoSQL Document Database and Application Platform, O'Reilly Media, 2014., ISBN: 978-1449337100,
- Norman Walsh, XML Pipelines, 2010, <http://xprocbook.com/>

NOSQL DATABASES

INMPA9926-17

Semester:	1
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. László Szathmáry

Topics:

NoSQL data models; NoSQL database management systems. Features of the MongoDB document-oriented system; JSON format. Installing MongoDB; command-line interface; CRUD operations. Using the CRUD operations from applications. Schema design in MongoDB. Performance; indexes; administrative tools. Aggregation framework. The Redis key/value store; installation; command-line interface. Using Redis from applications. The Neo4j graph-based system; components of Neo4j. Installing Neo4j; command-line interface; web interface. The Cypher query language. Using Neo4j from applications. Column stores. Summary, outlook.

Compulsory/Recommended Readings:

- Kristina Chodorow: MongoDB: The Definitive Guide. O'Reilly, 2013.
- Josiah L. Carlson: Redis in Action. Manning, 2013.
- Gregory Jordan: Practical Neo4j. Apress, 2014.

SENSOR NETWORKS AND THE INTERNET OF THINGS

INMPA9927-17

Semester:	1
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. Attila Buchman

Topics:

Intelligent sensors, sensor networks and connection to IoT. Intelligent sensors hardware architecture. Sensor network architectures. Design issues. Wireless Sensor Networks standardization: IEEE 802.15.4., ZigBee and Bluetooth LE protocol stack. Typical sensor networking case studies (health, engineering applications, environmental protection, smart home, etc)

Compulsory/Recommended Readings:

- Edgar H., Jr. Callaway, Edgar H. Callaway, Wireless Sensor Networks: Architectures and Protocols, Auerbach Publications, 2003
- H. Karl, A. Willig, „Protocols and Architectures for Wireless Sensor Networks”, John Wiley & Sons Ltd, 2005

PARALLEL AND HIGH PERFORMANCE COMPUTING

INMPA9928-17

Semester:	2
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	None
Responsible:	Dr. Norbert Bátfa

Topics:

The goal of subject is to familiarize students with possibilities of parallel implementation of applications. The topics are the following. Flynn's classification of parallel architectures. Amdahl's law. Processes and threads in Linux environment. System V IPC (semaphore arrays, shared memory and message queues). POSIX threads. Dijkstra's semaphores, mutual exclusion. Classical IPC problems: dining philosophers, sleeping barber, readers and writers and producer-consumer problem. Comparison between OpenMP and MPI, OpenMP and UPC, OpenMP and NUMA, OpenMP and TBB, OpenMP and CUDA. Comparison between MPI and PVM, PVM and Map-Reduce. Supercomputer architectures, transferring files to the supercomputer. HPC scheduling systems. Presentation of the NIIF supercomputers from the point of view of the programmer. Introductory case studies: computing hexadecimal digits of Pi with BBP algorithm, computing the Mandelbrot set. OpenMP, CUDA, Tensorflow and Map-Reduce case studies.

Compulsory/Recommended Readings:

- John Cheng, Max Grossmann, Ty McKercher (2014) Professional Cuda® C programming, John Wiley & Sons.
- Barbara Chapman, Gabriele Jost, Ruud van der Pas (2008) Using OpenMP: portable shared memory parallel programming, MIT Press.

TEXT- AND WEB-MINING

INMPA9929-17

Semester:	3
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	INMPA0206-17 (Data mining)
Responsible:	Dr. Márton Ispány

Topics:

Preprocessing, modelling and representation in text mining. Information retrieval. Classification. Segmentation. Latent semantic indexing. Web structure mining, web crawlers. Social network analysis, indexing, PageRank and HITS. Web usage mining. Opinion mining and sentiment analysis. Recommendation systems and collaborative filtering. Data streams. Summary and applications.

Compulsory/Recommended Readings:

- Ronen Feldman, James Sanger, The Text Mining Handbook. Cambridge University Press, 2007,
- Bing Liu, Web Data Mining. Springer, 2011,
- Documentation of the applied data mining software.

INFORMATION SYSTEMS IN PRACTICE

INMPA9930-17

Semester:	4
Type:	Laboratory
Number of Classes:	0+0+2
Credit:	3
Status:	Optional
Assessment:	Practical mark
Prerequisites:	INMPA0104-17 (Information systems)
Responsible:	Dr. Márton Ispány

Topics:

Practical application of information systems: ERP systems, smart city and smart campus solutions.

Compulsory/Recommended Readings:

- R. Elmasri, S. B. Navathe: Fundamentals of Database Systems, Addison Wesley, 2004,
- Sommerville: Software Engineering, Addison Wesley, 2004.

ADVANCED SOFTWARE ENGINEERING

INMPA9931-17

Semester:	4
Type:	Lecture / Laboratory
Number of Classes:	2+0+2
Credit:	6
Status:	Optional
Assessment:	Exam
Prerequisites:	None
Responsible:	Dr. Attila Adamkó

Topics:

Introducing students into the advanced part of Software Engineering aspects. Highlighting principles, methods and XML standards that are widely used in the industry. In the practical part the goal is to demonstrate their use and the use of developer tools in this field.

Compulsory/Recommended Readings:

- Sommerville: Software Engineering, Addison Wesley, 2007
- Rozanski, N., Woods E., Software Systems Architecture: Working With Stakeholders Using Viewpoints and Perspectives, Addison Wesley, 2005.
- Rumbaugh J., Jacobson I., Booch G., Unified Modeling Language Reference Manual, The, 2nd Edition, Addison Wesley, 2004.
- Evans, E., Domain-Driven Design: Tackling Complexity in the Heart of Software, Addison Wesley, 2003
