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7. Szabó, M., Gascón, E., Baran, S., Parametric post-processing of dual-resolution precipi-
tation forecasts. Wea. Forecasting 38 (2023), no. 8, 1313–1322. (IF: 2.900; SJR: Q1)

8. Lakatos, M., Lerch, S., Hemri, S., Baran, S., Comparison of multivariate post-processing
methods using global ECMWF ensemble forecasts. Q. J. R. Meteorol. Soc. 149 (2023),
no. 752, 856–877. (IF: 8.900; SJR: D1)

1. Sharma, K., Lee, J. C. K., Porson, A., Chandramouli, K., Roberts, N., Boyd, D.,
Zhang, H., Barker, D. M., Adaptive selection of members for convective-permitting
regional ensemble prediction over the western Maritime Continent. Front. Environ.
Sci. 11 (2023), paper 1281265, doi:10.3389/fenvs.2023.1281265.

2. Allen, S., Ziegel, J., Ginsbourger, D., Assessing the calibration of multivariate prob-
abilistic forecasts. Q. J. R. Meteorol. Soc. (2024), doi:10.1002/qj.4647.
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23. Baran, S., Szák-Kocsis, Cs., Stehĺık, M., D-optimal designs for complex Ornstein-Uhlenbeck
processes. J. Stat. Plan. Inference 197 (2018), 93–106.

1. Sykulski, A., Olhede, S., Sykulska-Lawrence, H., The elliptical Ornstein-Uhlenbeck
process. Stat. Interface 16 (2023), 133–146.

24. Baran, S., K-optimal designs for parameters of shifted Ornstein-Uhlenbeck processes and
sheets. J. Stat. Plan. Inference 186 (2017), 28–41.

1. Yan, L., Duan, X., Liu, B., Xu, J., Bayesian optimization based on K-optimality.
Entropy 20 (2018), paper 594, doi:10.3390/e20080594.
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37. Koliander, G., El-Laham, Y., Djurić, P. M., Hlawatsch, F., Fusion of probability
density functions. Proc. IEEE 110 (2022), 404–453.

38. Darbandsari, P., Coulibaly, P., Assessing entropy-based Bayesian model averaging
method for probabilistic precipitation forecasting. J. Hydrometeorol. 23 (2022),
421–440.

39. Tankov, P., Tinsi, L., Stochastic optimization with dynamic probabilistic forecasts.
Ann. Oper. Res. (2022), doi:10.1007/s10479-022-04913-y.

40. Yang, D., Kleissl, J., Summarizing ensemble NWP forecasts for grid operators: Con-
sistency, elicitability, and economic value. Int. J. Forecast. 39 (2023), 1640–1654.

41. Bolin, D., Wallin, J., Local scale invariance and robustness of proper scoring rules.
Stat. Sci 38 (2023), 140–159.

23



42. Phipps, K., Meisenbacher, S., Heidrich, B., Turowski, M., Mikut, R., Hagenmeyer,
V., Loss-customised probabilistic energy time series forecasts using automated hy-
perparameter optimisation. Proceedings of the 14th ACM International Conference
on Future Energy Systems. Association for Computing Machinery (ACM), New
York, 2023, 271–286.

43. Abedinia, O., Sobhani, B., Bagheri, M., A new hybrid forecasting model for solar
energy output. 2023 IEEE International Conference on Environment and Electri-
cal Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe,
Madrid, Spain, 2023, doi: 10.1109/EEEIC/ICPSEurope57605.2023.10194845.

44. Wattanachit, N., Ray, E. L., McAndrew, T. C., Reich, N. G., Comparison of combi-
nation methods to create calibrated ensemble forecasts for seasonal influenza in the
U.S. Stat. Med. 42 (2023), 4696–4712.

45. Van Poecke, A., Tabari, H., Hellinckx, P., Unveiling the backbone of the renew-
able energy forecasting process: Exploring direct and indirect methods and their
applications. Energy Rep. 11 (2024), 544–557.

29. Baran, S., Pap, G., Sikolya, K., Testing stability in a spatial unilateral autoregressive
model. Comm. Statist. Theory Methods 45 (2016), 933–949.

30. Baran, S., Lerch, S., Log-normal distribution based EMOS models for probabilistic wind
speed forecasting. Q. J. R. Meteorol. Soc. 141 (2015), 2289–2299.

1. Junk, C., Delle Monache, L., Alessandrini, S. Analog-based ensemble model output
statistics. Mon. Weather Rev. 143 (2015), 2909–2917.
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PhD thesis, Université Paris-Saclay, 2017.

15. Bogner, K., Liechti, K., Zappa, M., Technical note: Combining quantile forecasts
and predictive distributions of stream-flows. Hydrol. Earth Syst. Sci. 21 (2017),
5493–5502.

16. Sun, X. G., Yin, J. F., Zhao, Y., Using the inverse of expected error variance to
determine weights of individual ensemble members: application to temperature pre-
diction. J. Meteor. Res. 31 (2017), 502–513.

17. Castro Arjona, S., Análisis de la dispersión en la predicción meteorológica propor-
cionada por ECMWF-EPS. Master thesis, Universidad de Sevilla, 2018.

18. Harrou, F., Sun, Y., Madakyaru, M., Bouyedou, B., An improved multivariate chart
using partial least squares with continuous ranked probability score. IEEE Sensors
J. 18 (2018), 6715–6726.

19. Wilks, D. S., Chapter 3 – Univariate Ensemble Postprocessing. In Vannitsem, S.,
Wilks, D. S., Messner, J. W. (eds.), Statistical Postprocessing of Ensemble Forecasts ,
Elsevier, 2018, pp. 49–89.

20. Han, K., Choi, J., Kim, C., Comparison of statistical post-processing methods for
probabilistic wind speed forecasting. Asia-Pacific J. Atmos. Sci. 54 (2018), 91–101.

21. Wilks, D. S., Enforcing calibration in ensemble postprocessing. Q. J. R. Meteorol.
Soc. 144 (2018), 76–84.

25



22. Zamo, M., Naveau, P., Estimation of the continuous ranked probability score with
limited information and applications to ensemble weather forecasts. Math. Geosci.
50 (2018), 209–234.

23. Masseran, N., Integrated approach for the determination of an accurate wind-speed
distribution model. Energy Convers. Manag. 173 (2018), 56–64.
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(2014), no. 3, 217–241.

1. Schefzik, R., Physically coherent probabilistic weather forecasts using multivariate
discrete copula-based ensemble postprocessing methods. PhD thesis, Heidelberg Uni-
versity, 2015.

2. Lerch, S., Probabilistic forecasting and comparative model assessment, with focus on
extreme events. PhD thesis, Karlsruhe Institute of Technology, 2016.

32



3. Narendra, R. D. Ensemble Model Output Statistics untuk Prakiraan Cuaca Jangka
Pendek. Master Thesis, Institut Teknologi Sepuluh Nopember, Surabaya, 2017.

4. Javanshiri, Z., Fathi, M., Mohammadi, S. A., Comparison of the BMA and EMOS
statistical methods for probabilistic quantitative precipitation forecasting. Meteorol.
Appl. 28 (2021), paper e1974, doi:10.1002/met.1974.

5. Dehmolaie, M., Rezazadeh, M., Azadi, M., Evaluation of deterministic wind speed
forecasting output of two ensemble post-processing methods. Iran. J. Geophys. 15
(2021), 93–117.

6. Phipps, K., Lerch, S., Andersson, M., Mikut, R., Hagenmeyer, V., Ludwig, N.,
Evaluating ensemble post-processing for wind power forecasts. Wind Energy 25
(2022), 1379–1405.
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al. (eds.), Proceedings of the Conference on Applied Mathematics and Scientific
Computing , Springer, Dordrecht, 2005, pp. 187–196.

6. Baran, S., Estimating the transition matrix of a finite state space Markov chain with
MATLAB. Proc. of the Workshop on Statistics at Universities: Its Impact for Society ,
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Verdes E., Introduction to Mathematical Statistics. Kossuth University Press, Debrecen,
1997, 523 pages. (Chapter X., pp. 345–380., in Hungarian)
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